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Abstract. A simple system consisting of an asymmetric dimer cooperating with two baths is presented as
a challenge to the second law of thermodynamics. This requires specific coupling of the dimer to the baths
and a specific thermodynamic regime.

PACS. 05.30.-d Quantum statistical mechanics – 05.70.-a Thermodynamics

1 Introduction

In view of experimental [1–3], theoretical [4–7] (see
also [8,9] for extended list of references) as well as com-
bined evidence [10], it is difficult to disregard or ignore
a priori all challenges to the second law of thermodynam-
ics as erroneous, not reproducible, or misleading. Further-
more, a number of other paradoxical systems exist where
experimental evidence speaks in favour of the second law
violations though decisive experiments have not been per-
formed so far [11,12]. Growing interest in the problem
that would deepen our understanding of Nature and po-
tentially redefine all of thermodynamics underscores the
importance of finding simple systems that do not mask
the relevant processes by technical complexity. Many at-
tempts have been made, but their results are still not con-
clusive. Single quantum Brownian particle in a harmonic
confining potential and coupled linearly to a bath of non-
interacting harmonic oscillators is perhaps still too sim-
ple for such purposes [13]. Here we report that a simple
quantum particle on a pair of non-equal states – an asym-
metric dimer – may under suitable conditions behave in a
way challenging the second law. The necessary conditions
include a specific type of strong coupling of the dimer to
a pair of baths.

2 Model

The Hamiltonian for the proposed system reads

H = HS + HB + HS−B, (1)
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where Hamiltonians for a single particle on a dimer, the
pair of baths, and the system-bath coupling read, respec-
tively:
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Operators a†
j and aj are the standard (Fermi- or Bose-

like) particle creation and annihilation operators; ε1 < ε2
are local particle site-energies and J is the hopping (res-
onance or transfer) integral. The two baths of harmonic
phonons involved (baths I and II) are distinguished by
corresponding phonon frequencies ωk and Ωk, and also
by the respective creation b†k, B†

k and annihilation opera-
tors bk, Bk. N is the number of the phonon modes in each
of the baths separately.

We are interested in the density matrix ρ(t) ≡ ρS(t) of
our system, i.e. the dimer. Its definition reads as ρS(t) =
TrBρS+B(t) where ρS+B(t) is the density matrix of the
whole complex ‘system + bath’ (the bath itself consist-
ing of two baths as specified above). Time dependence of
ρS+B(t) is determined, in addition to the initial condition,
by the Liouville - von Neumann equation

i
d
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1
�
[H, ρS+B(t)] ≡ LρS+B(t) (3)
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where L . . . = [H, . . .]/� is the Liouville superoperator.
The basic problem is that ρS+B(t) contains too much
information, which makes it difficult to follow its time-
dependence in practice. Therefore, at this stage it is com-
mon to resort to some of the projection techniques; we
shall do this now.

3 Davies theory and results

In what follows, we first apply an exact mathematical re-
sult obtained by Davies – see [14], Theorem 1.2. (Discus-
sion of applicability of the Davies theory may be found
below.) Davies’ theorem states that, in the physical nota-
tion [15],

lim
λ→0

sup
0≤λ2t≤a

||ρ(t) − e−i(L0+〈L1〉+iλ2K)tρ(0)|| = 0,

K... =−
∫ +∞

0

dxTrB

(
eiL0xL1e−iL0x(1−P)L1(... ⊗ ρB)

)
,

〈L1〉... = TrB(L1... ⊗ ρB). (4)

Several aspects of this deserve explanation.

– The Hamiltonian has been split

H = H0 + λH1, (5)

with the corresponding definitions

L0 . . . =
1
�
[H0, . . .], λL1 . . . =

1
�
[λH1, . . .] (6)

Here λ is a scaling parameter.
– Integral

∫ +∞
0 dx . . . in the definition of K in (4) is taken

in the thermodynamic limit of the bath. This limit is
not indicated explicitly, but it is important in that it
ensures the convergence of the integral as well as time-
irreversible behavior of the system.

– P . . . = P2 . . . is a projection superoperator fulfilling

PL0 = L0P . (7)

With the two choices of H0 below, (7) is well satisfied
with our choice of P . . . as the Argyres-Kelley projec-
tor [16]

P . . . = ρB TrB(. . .), (8)

– Finally, the initial condition

ρS+B(0) = ρ(0) ⊗ ρB (9)

has been assumed. This means that the system and
bath are initially statistically independent, with ρB be-
ing the initial density matrix of the bath. In order to
formally introduce temperature, we take ρB as

ρB =
exp{−βIH

I
B − βIIH

II
B }

TrB exp{−βIHI
B − βIIHII

B } · (10)

Hence TI = 1/(kBβI) and TII = 1/(kBβII) are the
initial temperatures of baths I and II with kB the
Boltzmann constant.

The meaning of the statement (4) becomes evident
once we realize that ρ(t) is the density matrix of the sys-
tem with its time-dependence determined from (3). So, the
statement (4) means that the time development of ρ(t) is
not, under the above assumptions and in the above limit-
ing sense, distinguishable from that one given by equation

i
d
dt

ρ(t) = [L0 + 〈L1〉 + iλ2K]ρ(t). (11)

Now, a standard choice is usually made corresponding
to the van Hove scaling given by

H0 = HS + HB, λH1 = HS−B. (12)

This choice then yields (11) as the weak-coupling master
equation [17] (in fact, these are Redfield equations without
the secular Redfield approximation [18–20]). In the weak
coupling regime the bath-induced processes are infinitely
slower than inherent internal transfer processes in the sys-
tem; in our case, these are the coherent transfer processes
caused by the coherent transfer term J(a†

1a2 + a†
2a1) in

HS in (2). This regime, however, is not what we are here
interested in; in fact, in the weak coupling regime nothing
particular happens. Instead, we are interested in the situ-
ation when the coherent transfer process rates are compa-
rable to the bath assisted process rates indicated by both
HI

S−B and HII
S−B. Hence, as far as we are forced by tech-

nical reasons to use the scaling ideas, the only and proper
choice of H0 and λH1 compatible with the above regime
is that one in which

H0 =
2∑

j=1

εja
†
jaj + HB, λH1 = J(a†

1a2 + a†
2a1) + HS−B.

(13)
This yields from (4) the set of equations for site elements
of the density matrix ρ(t)

see equation (14) above
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Here
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In these expressions for Γ ’s, one can recognize the stan-
dard Golden Rule bath-assisted transfer rates. Their posi-
tions on the right hand side of (14) are standard and fully
correspond to what we know about their role in transfer
and bath-induced dephasing processes. The bad news to
critics of this approach is: Except for the difference be-
tween Γ↑ and Γ↓ found in (15), owing to the spontaneous
processes with respect to bath II, (14) fully corresponds
to what we would get from standard models, for example,
from the stochastic Liouville equation approach [21].

It is now easy to find the stationary solution to (14)
and to use it to express the net rate

Q = (ε2 − ε1)[Γ↓ρ22 − Γ↑ρ11] (16)

of energy emitted into (or, for Q < 0, absorbed from)
bath II as a consequence of the existence of coupling term
HII

S−B of the dimer to the bath. (Eq. (16) follows easily
from the physical meaning of the quantities involved, but
it can also be directly derived from the heat balance con-
dition.) The result reads

Q =

2Γ (J/�)2(ε2 − ε1)[Γ↓ − Γ↑]
(Γ↓ + Γ↑)[(ε2 − ε1)2/�2 + Γ 2 + Γ (Γ↓ + Γ↑)] + 4Γ (J/�)2

·
(17)

Thus, in general, we have Q �= 0 expressing, for ε2 > ε1,
the net heat flow from bath I to bath II. Several facts are
worth stressing:

– The effect is purely quantum with respect to bath II.
Disregarding the corresponding spontaneous pro-
cesses, i.e. setting Γ↓ = Γ↑, yields zero energy (heat)
flow to bath II; that is Q = 0.

– The effect is based on a competition between the co-
herent and incoherent (bath-II assisted) channels. Re-
spectively, these are given by terms J(a†

1a2 + a†
2a1)

in HS and 1√
N

∑
k Gk�Ωk(a†

1a2 + a†
2a1)(Bk + B†

k) ≡
HII

S−B in (2). Setting either J = 0 or Gk = 0 (i.e.
Γ↑ = Γ↓ = 0) yields zero heat flow into bath II. We
point out that:
– these two mechanisms (coherent and incoherent

channels) appear not to have been considered pre-
viously as simultaneously competing or cooperat-
ing; and

– the coherent mechanism is elastic (i.e. symmetric
with respect to the 1 ↔ 2 transitions) while the in-
coherent bath-II assisted one is inelastic, i.e. asym-
metric, preferring 2 → 1 transitions with net heat
flow going into bath II (because of the assumed
inequality ε2 > ε1).

The simultaneously competing coherent and incoher-
ent transfer mechanisms 1 ↔ 2 are crucial to this
model in that each of the mechanisms alone would
lead to establishing definite phase relations between
probability amplitudes of finding the particle at sites
1 and 2. This would imply a kind of a chemical bond-
ing that would make the particle distribution stiff, thus
hindering particle and heat transfer.

– As expected, one obtains Q = 0 when Γ = 0, i.e. when
there is no heating of the particle at site 1 (at the cost
of heat contents of bath I). Furthermore, because of
energy-time uncertainty relations, the moving particle
may be on-site heated. Such an on-site particle heat-
ing combined with two competing mechanisms of the
particle transfer to another site has, to our best knowl-
edge, not considered been considered before.

Two points are noteworthy. First, for the final effect,
the regime considered is critical (see Eq. (14)). In the
weak-coupling regime, the 1-2 covalent bonding owing to
the term ∝ J in HS would again make the particle dis-
tribution stiff, hindering any heat flow transmitted by
the particle. Technically, this would appear in the square
matrix on the right hand side of (14). Secondly, in this
system Q > 0, irrespective of temperatures TI > 0 and
TII > 0 of the individual baths. So, for TII > TI , we have
a spontaneous heat transfer from our colder bath I to the
warmer bath II. This transfer is spontaneous; that is, it
is not aided from outside. Both the baths are macroscopic
and standard thermodynamics is applicable. However, this
spontaneous heat flow from colder to warmer macroscopic
bodies violates the Clausius form of the second law of ther-
modynamics. This behavior is allowed within the rigorous
quantum theory of open systems by Davies.

4 Discussion

Although this model and its treatment are rigorous, sev-
eral apparently open issues should be discussed.

– The upper time limit beyond which the Davies theory
could fail is finite, as indicated by the finite constant a
in (4). This does not present a problem, given that it
can be extended to arbitrarily long times (or, equiva-
lently, to arbitrarily low frequencies). Such extensions
are standard devices in kinetic theory. For example,
one can cite numerous successful transport predictions
starting from the Boltzmann equation based on just
such assumptions. Of course, this provides no explicit
justification in this case.

– Recently, Novotný [22] proposed an exactly solv-
able model in which an uncritical application of
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conclusions of the Davies theory 1 yields results contra-
dicting the exact solution obtained by the nonequilib-
rium Green function method. Unlike (2), the Novotný
model (Hamiltonian of the system + bath, together
with their interaction) is bilinear in creation and
annihilation operators. Such models (e.g., those of
harmonic phonons) are exactly diagonalizable, and
therefore not applicable to the inherently nonequilib-
rium model discussed here. Diagonizable models for
fermions, for example, include the exact eigenstates
given by Slater determinants composed of properly
chosen counterparts of molecular orbitals and those
of the Bloch-like states from the periodic solid state
theory. Particles in such states, in effect, do not scat-
ter; therefore, there is no effective bath-induced diffu-
sion in the model of [22] and, consequently, no long-
time diffusion regime corresponding to (11). While the
Novotny model is mathematically correct, in essence,
it has built-in second law compliance.
One should stress that the effect and model of [8] crit-
icized by Novotný is intimately connected with the ef-
fect of diffusion. In fact, Novotný in [22] introduced his
formal bath by simply a formal procedure of splitting
sites into two groups defining the bath and the system.
This cannot change the coherent character of propa-
gation of particles considered. So, the model of [22]
cannot describe diffusion and, therefore, cannot be
critically compared with [8]. Similarly, this is the case
for our model above. Despite this, Novotny’s model re-
mains as a challenge to the Davies mathematical the-
ory, and in connection with the problem treated here, it
shows uncertainties that remain concerning applicabil-
ity of any limiting theory to finite coupling situations,
in particular when assumptions underlying the theory
cannot be simply verified. Hence, independent verifi-
cation of the above conclusions on the existence of the
spontaneous heat flow from our colder to the warmer
baths would be highly desirable. This could take the
form of theory or experiment.

The most direct theoretical verification is perhaps pro-
vided by the Time-Convolutionless Generalized Master
Equation (TCL-GME) theory [23–27]. Using the Argyres-
Kelley projector (8), this approach yields, the basic equa-
tion in form of

i
d
dt

ρ(t) = [L0 + 〈L1〉 + iλ2KTCL−GME(t)]ρ(t). (18)

to be compared with (11). Here, we have again ap-
plied the initial condition (9). The relaxation superop-
erator λ2KTCL−GME(t) is (owing to initial transient ef-
fects) necessarily time-dependent, however, with increas-
ing time and with a genuine bath (not artificial one
as in [22]), it fast acquires a time-independent form. A
necessary condition is that the real time t exceeds a
(presumably) well identifiable bath-dephasing time tdeph.
Then (18) reproduces the result of (11). With (13),

1 In fact, Novotný did not verify the assumptions of the
Davies theory.

with t � tdeph, and upon disregarding higher-order effects
in λ, λ2KTCL−GME(t) reads, however,

λ2KTCL−GME . . . =

−
∫ ∞

0

TrB

(
L1 exp{−iL0τ}(1 − P)L1P

× exp{iL0τ} dτ(ρB ⊗ . . .)
)

+ O(λ4). (19)

Structurally, the form of the relaxation superoperator
given in (4) and by (19) are evidently different. Hence, for
general and more complicated models, two different pre-
dictions on the time-development of the system relaxation
may be provided by (4) and (18–19). We have verified, on
the other hand, that this is fortunately not the case of our
model (2). In other words, to the lowest (second) order in
λ and with t � tdeph, (18-19) reproduces (14), reproduc-
ing thus the above conclusion on violation of the second
law of thermodynamics in the Clausius formulation.

One thing should be stressed: The TCL-GME method
respects the fact that time t could be, in experiment, taken
in principle arbitrarily large (frequency could be arbitrar-
ily low). On the other hand, experimental coupling con-
stants (e.g. λ in our case) are fixed. Thus, consequent the-
ories should resort (if at all) to expansions in powers of the
coupling constants at most at the last stage, after taking
the long-time (low-frequency) limit. Our TCL-GME ap-
proach is definitely of this type. Hence, it is resistive to
objections of the previous type regarding the finiteness
of a. Nonetheless, uncertainties remain concerning finite
values of the coupling constants; hence, it would be de-
sirable to find exactly solvable limiting cases and models
where:
– expansions in powers of λ could be avoided; and
– finite values of λ could be used throughout the time

interval of the relaxation process, until a station-
ary (though still not necessarily equilibrium) state is
achieved.

Unfortunately, such methods and models do not yet exist
in full generality. One additional argument is worth men-
tioning here: The most relevant and crucial feature of (14)
– irrespective of the method used to derive it – that is tech-
nically responsible for values of Q �= 0 and the violability
of the Second law is the relaxation among local eigenstates
of HS |J=0 superimposed on a free propagation in terms of
HS |J �=0. From the point of view of the Davies theory, this
can be understood as a consequence of choosing, in (13)
and in accordance with the physical regime investigated,
the perturbation as including both the bath-free and the
bath-assisted transfer processes. So, an element of sub-
jectivity in the choice could be made responsible for the
second law challenge obtained. This manner of treating
competing processes is, has been known for years as the
only allowed choice corresponding to the above regime,
and it has been since successfully used many times with
verified effects [28]. Absence of the J− induced (i.e. coher-
ent) contribution to the bath-assisted relaxation processes
in, e.g., the relaxation superoperator λ2KTCL−GME . . . 2

2 Notice absence of J in all the formulae (15).
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could be well justified in the singular reservoir limit in
which tdeph → 0, all |gk1,k2 | → +∞, |Gk| → +∞, but such
that all the transfer rates Γ ’s remain finite and compa-
rable with J/�. Then all the J−dependent contributions
automatically disappear from the relaxation superopera-
tor λ2KTCL−GME . . . because of the infinitely short extent
of all the integrations on the time axis.

In the end, one should realize that all methods men-
tioned here rely upon standard approaches to modelling
in physics and chemistry in which smaller terms in the
Hamiltonian, Liouvillean etc. (e.g., presumably less im-
portant reaction channels) are omitted and only dominat-
ing ones are considered. This approach might, in long time
limit, be treacherous [29]. If so, however, the consequences
would be far reaching, going even beyond physics or nat-
ural science in general. In any event, the final word must
come from experiment.

This work is a part of the research program MSM113200002
financed by the Ministry of Education of the Czech Republic.

Note

This is the final article written by Vlada Capek before
his death in October, 2002. Vlada was one of the prin-
cipal exponents of the emerging field of second law chal-
lenges. Through examination of unresolved foundational
issues and counter-examples to its absolute status, this
new field attempts to understand the second law in more
fundamental terms than has yet been achieved.

More memorable to me than Vlada’s prodigious and
original contributions to physics, however, were his sharp
wit, quick laugh, intellectual courage, and indominable
spirit.

He was a lion. He will be missed.

Daniel P. Sheehan,
Dept. Physics, USD
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